Organoids are made from stem cells in the lab. Cell clusters organize spatially into organ-like structures, which is why they are also known as “mini-organs.” Researchers can use organoids to investigate the interactions between cells in 3D.
The Argelander professorships for early-career researchers (named after the Bonn-based astronomer Friedrich Wilhelm August Argelander, 1799–1875) are geared toward expanding the research profile of the University’s six TRAs, where researchers work together to tackle issues of great relevance to the future across subject and faculty boundaries.
“Organoid research is very much a pioneering field in modern biomedical research,” says Prof. Dr. Waldemar Kolanus, Speaker of the TRA Life and Health and Managing Director of the University of Bonn’s Life & Medical Sciences Institute (LIMES), where the professorships are based. In his view, organoid research is partly about bridging the gap between the existing cell culture models and even more complex animal models and partly about embracing a completely new philosophy: “It’s a question of building living ‘organ-like’ systems from scratch, literally from individual (stem) cells. In other words, constructing organs ourselves rather than ‘pulling them apart’ as we used to will give us a better understanding of how they develop.”
Organoids are already used in numerous labs at the University and the University Hospital Bonn. Says Kolanus: “By recruiting these two Argelander assistant professors, however, we’ve succeeded in establishing a new and highly visible research focus in this rapidly evolving field. We in the TRA Life & Health are delighted about the two young researchers who will be bringing their highly innovative and, most importantly, complementary approaches to the University of Bonn.”
Jun.-Prof. Dr. Elena Reckzeh’s research straddles the boundaries between chemistry and biology. She is aiming to discover novel chemical tools (potential drug candidates), which she intends to use to manipulate biological phenomena and thus understand them better.
Even before she had finished her doctorate, she had already developed a glucose uptake inhibitor in order to starve cancer of glucose, its favorite nutrient. “This made me realize that the biological system we use to discover new chemical compounds can have a major influence on our results,” she says. “Biological systems modeling an organ or disease more accurately will allow us to develop new and possibly better therapeutic strategies.”
Organoids have played an increasing role in Reckzeh’s research work over the past few years. She has used mini-intestines to study the nutrient and drug metabolism inside the small intestine and has deployed tumor organoids to find new strategies for combating squamous cell carcinomas of the head and neck.
As a new Argelander Professor for Organoid Biology, Elena Reckzeh will now be working at the interface between chemical and organoid biology. She and her team mainly want to use organoid models to investigate nutrient uptake in the small intestine and metabolic mechanisms in conjunction with bowel cancer. “We’ll be employing these models in chemical screens to discover new tools for studying metabolic disorders and cancer metabolism,” she explains. By incorporating additional components, including the immune system, microbiota and multi-organ systems, it should be possible to research how changes in the environment affect the disease models.
MEDICA-tradefair.com; Source: Rheinische Friedrich-Wilhelms-Universität Bonn