Regenerative medicine: helps the body healing
Menu

Image: Fluorescence microscopy image of a lab-grown

Thomas Dennison/University of Cambridge

Lab-grown 'mini-guts' offer new insights for Crohn’s disease treatments

06.09.2024

Researchers at the University of Cambridge have developed lab-grown "mini-guts" to better understand and treat Crohn’s disease, a chronic inflammatory bowel disease affecting millions worldwide. These mini-guts, or organoids, mimic the gut lining's key functions and could pave the way for more personalized and effective treatments.
Read more
Image: Fluorescence image of cells in a culture dish; Copyright: S. Rieck/University Hospital Bonn (UKB)

S. Rieck/University Hospital Bonn (UKB)

Cardiovascular research: Generation of endothelial cells from stem cells

23.08.2024

Researchers at the University of Bonn and the University Hospital Bonn have developed a cost-effective and efficient method to generate functional endothelial cells from human induced pluripotent stem cells (hiPSCs).
Read more
Image: close-up of a human eye

VisioPrinTech: 3D-printed Cornea to restore eyesight

21.06.2024

The Karlsruhe Institute of Technology (KIT), in collaboration with Carl Zeiss Meditec AG and Evonik Healthcare, developed a method to restore eyesight by printing a new cornea during surgery using a laser-based process with personalized bioink. The "VisioPrinTech" process addresses corneal disorders, common among the aging population.
Read more
Image: Diagram of synapse formation: Glowing protein shows the development of synaptic vesicles; Copyright: Barth van Rossum, FMP

Barth van Rossum, FMP

Microscopy and fluorescence show how synapses are formed

23.10.2023

How are synapses formed, those points of contact that allow the transmission of information from one neuron to the other? Working with an international team, researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) have now uncovered a crucial mechanism and elucidated the identity of the axonal transport vesicles that generates synapses.
Read more
Image: Baby mannequin connected to a ventilator in an incubator; Copyright: Messe Düsseldorf

Messe Düsseldorf

With stem cell model on the trail of congenital diaphragmatic hernia

09.05.2023

Researchers have designed a new stem cell model to study congenital diaphragmatic hernia in newborns with underdeveloped lungs. They were able to isolate stem cells from the fluid that is suctioned from the baby’s lungs and normally gets discarded and use them as a foundation for the model.
Read more
Image: Prof Giuseppe Intini in a blue sweat jacket, smiles at the camera; Copyright: Giuseppe Intini

Giuseppe Intini

New approach helps skull bones mend themselves

24.04.2023

In a new study published in Proceedings of the National Academy of Sciences, University of Pittsburgh researchers developed a novel approach that promoted bone regeneration in mice without implantation of bone tissue or biomaterials.
Read more
Image: A human brain organoid (red) grows on the hammock-like structure of a mesh MEA; Copyright: Max Planck Institute for Molecular Biomedicine

Max Planck Institute for Molecular Biomedicine

Microelectrode array: hammock for brain organoids

20.04.2023

Novel microelectrode array system enables long-term cultivation and electrophysiological analyses of brain organoids.
Read more
Image: Tissue engineering, tweezers with a solution in a laboratory vessel; Copyright: Fraunhofer-Translationszentrum/Fraunhofer ISC

Fraunhofer-Translationszentrum/Fraunhofer ISC

SAPs4Tissue: human tissue models with customized biomaterials

12.04.2023

In a joint project of the Max Planck Institute for Polymer Research, Mainz, and the Translational Center for Regenerative Therapies at the Fraunhofer Institute for Silicate Research ISC, Würzburg, scientific principles and biomaterials for the standardized production of valid tissue models are to be developed.
Read more
Image: A woman with dark hair, dark glasses and a white coat stands in front of a door frame in a laboratory and smiles at the camera; Copyright: Daniel Delang / TUM

Daniel Delang / TUM

Mini-heart in a Petri dish: organoid emulates development of the human heart

11.04.2023

The team working with Alessandra Moretti, Professor of Regenerative Medicine in Cardiovascular Disease, has developed a method for making a sort of "mini-heart" using pluripotent stem cells.
Read more
Image: Close-up of a female hand holding the orange ribbon symbolizing the fight against leukemia; Copyright: JoPanwatD

JoPanwatD

AI finds targets for CAR-T cell therapy against acute myeloid leukemia

20.03.2023

Unlike other forms of blood cancer, acute myeloid leukemia (AML) cannot currently be treated with CAR-T cell immunotherapy. The reason is that specific molecular targets with which certain immune cells could specifically target AML cells are lacking, which would permit the immune system to attack cancer.
Read more
Image: A baby with a congenital diaphragmatic hernia is ventilated in an incubator; Copyright: Colourbox

Colourbox

Stem cell model: research into malformation of the newborn lung

15.03.2023

Congenital diaphragmatic hernia is one of the deadliest birth defects. To better understand and treat this condition in the future, an international team of researchers involving Leipzig University Hospital designed a new cell model in the laboratory and tested a drug therapy on it.
Read more
Image: A small dark box, a mobile impedance spectrometer; Copyright: Fraunhofer ISC

Fraunhofer ISC

Innovative in vitro eye irritation test to replace standard animal testing

10.03.2023

Researchers at the Translational Center for Regenerative Therapies TLC-RT of the Fraunhofer Institute for Silicate Research ISC want to work with partners to replace animal testing.
Read more
Image: Photograph of the semitransparent hydrogel used in this study; Copyright: Satoshi Tanikawa, et al. 2023

Satoshi Tanikawa, et al. 2023

Healing the brain: hydrogels enable neuronal tissue growth

03.03.2023

Synthetic hydrogels were shown to provide an effective scaffold for neuronal tissue growth in areas of brain damage, providing a possible approach for brain tissue reconstruction.
Read more
Image: Portrait of a researcher with PPE equipment analyzing brain activity; Copyright: DC_Studio

DC_Studio

New artificial model validates antibodies ability to reach the brain

03.03.2023

A research group at Uppsala University has developed a simple and effective artificial blood-brain barrier model that can be used to determine how well antibody-based therapies can enter the brain.
Read more
Image: An elderly man sits at an eye diagnostic device and is examined by a doctor; Copyright: Beachbumledford

Beachbumledford

Controlled manufacture, storage and freezing of artificial retinal cells

25.01.2023

Fraunhofer researchers have now developed a new method for the production and clinical application of stem-cell-based retinal implants, which could contribute towards the successful treatment of AMD.
Read more
Image: Preview picture of video

Tissue Engineering and Bioprinting – From artificial heart valves and printed humans

27.01.2021

Drug research and artificial skin replacement - these are the areas in which tissue engineering and bioprinting are already used today. What else could be possible in the future? We asked Dr. Nadine Nottrodt from Fraunhofer ILT and Prof. Sabine Neuß-Stein from RWTH Aachen University Hospital!
Read more
Image: Preview picture of video

Smartlab – Robotics and automation in the laboratory

15.09.2020

Some tasks in the laboratory are repetitive, need to be done extremely precise and require a lot of time. Such tasks are very tedious for humans, but they are tailor-made for robots. Such is the case with the "AutoCRAT" project at the Fraunhofer Institute for Production Technology IPT in Aachen. Here, a robotic platform is developed to produce stem cells for the treatment of osteoarthritis.
Read more
Image: The shoulder of a man with a surgical suture; Copyright: panthermedia.net/JPCPROD

Regenerative medicine: helps the body healing

03.02.2020

Severe wounds heal slowly and leave scars. This is why we have been using regenerative therapies for some time now to accelerate and improve healing. They also help to avoid permanent damage. Still, complex applications like replacing organs or limbs will rather remain vision than become reality for a long time.
Read more
Image: Two knees of a woman next to each other, the left knee has a surgical suture; Copyright: panthermedia.net/wujekspeed

Regenerative medicine: creating a new body?

03.02.2020

Regenerative medicine aims to repair the human body after injuries, accidents or major cancer surgery. Unfortunately, we are still not at a stage where this process can achieve optimal results for every conceivable situation. Having said that, various new methods are on the cusp of breakthrough.
Read more
Image: Graphic rendering of several cells in a petri dish; Copyright: panthermedia.net/dani3315

Organ-on-a-chip systems: limited validity?

01.02.2019

Organ-on-a-chip systems are technically a great enhancement of medical research because they facilitate testing of active ingredients on cell cultures in the chambers of a plastic chip. This replaces animal testing and improves patient safety. That being said, they are not a true-to-life replication of the human body and can only simulate a few functions and activities.
Read more