Regenerative medicine: helps the body healing -- MEDICA - World Forum for Medicine

Image: stamp for cells; Copyright: UPF / Nature Communications

Biological device capable of computing by printing cells on paper

22/03/2021

The Research Group on Synthetic Biology for Biomedical Applications at Pompeu Fabra University in Barcelona, Spain, has designed a cellular device capable of computing by printing cells on paper. For the first time, they have developed a living device that could be used outside the laboratory without a specialist, and it could be produced on an industrial scale at low cost.
Read more
Image: Red and blue colored tissue in a hexagon structure; Copyright: Pauline Zamprogno, ARTORG Center for Biological Engineering Research

Bernese researchers create sophisticated lung-on-chip

12/02/2021

A specialized laboratory of the ARTORG Center for Biomedical Engineering Research, University of Bern, headed by Olivier Guenat has developed a new generation of in-vitro models called organs-on-chip for over 10 years, focusing on modeling the lung and its diseases.
Read more
Image: The colored image of a cell cluster; Copyright: University of Cambridge

'Up-sizing' mini organs used in medical research

11/02/2021

A team of engineers and scientists has developed a method of 'multiplying' organoids: miniature collections of cells that mimic the behavior of various organs and are promising tools for the study of human biology and disease.
Read more
Image: Preview picture of video

Tissue Engineering and Bioprinting – From artificial heart valves and printed humans

27/01/2021

Drug research and artificial skin replacement - these are the areas in which tissue engineering and bioprinting are already used today. What else could be possible in the future? We asked Dr. Nadine Nottrodt from Fraunhofer ILT and Prof. Sabine Neuß-Stein from RWTH Aachen University Hospital!
Read more
Image: connection between nerve cells; Copyright: Kristian Herrera and authors

Signaling Strength between nerve cells depends on size of connections

22/01/2021

The neocortex is the part of the brain that humans use to process sensory impressions, store memories, give instructions to the muscles, and plan for the future. These computational processes are possible because each nerve cell is a highly complex miniature computer that communicates with around 10,000 other neurons. This communication happens via special connections called synapses.
Read more
Image: researching cartilage under a microscope; Copyright: Medical University of Vienna

Cartilage matrix for cartilage regeneration

20/01/2021

Just a few millimetres thick, articular cartilage plays a crucial role in our musculoskeletal system, since it is responsible for smooth (in the truest sense of the word) movement. However, the downside of its particular structure is that even minor injuries do not regenerate. Timely treatment of cartilage damage is therefore essential.
Read more
Image: Two knees of a woman next to each other, the left knee has a surgical suture; Copyright: panthermedia.net/wujekspeed

Regenerative medicine: creating a new body?

03/02/2020

Regenerative medicine aims to repair the human body after injuries, accidents or major cancer surgery. Unfortunately, we are still not at a stage where this process can achieve optimal results for every conceivable situation. Having said that, various new methods are on the cusp of breakthrough.
Read more
Image: The shoulder of a man with a surgical suture; Copyright: panthermedia.net/JPCPROD

Regenerative medicine: helps the body healing

03.02.2020

Severe wounds heal slowly and leave scars. This is why we have been using regenerative therapies for some time now to accelerate and improve healing. They also help to avoid permanent damage. Still, complex applications like replacing organs or limbs will rather remain vision than become reality for a long time.
Read more
Image: Graphic rendering of several cells in a petri dish; Copyright: panthermedia.net/dani3315

Organ-on-a-chip systems: limited validity?

01/02/2019

Organ-on-a-chip systems are technically a great enhancement of medical research because they facilitate testing of active ingredients on cell cultures in the chambers of a plastic chip. This replaces animal testing and improves patient safety. That being said, they are not a true-to-life replication of the human body and can only simulate a few functions and activities.
Read more