News from the Editors -- MEDICA - World Forum for Medicine

MEDICA Newsletter

Social Media

Image: 3-D printed scaffold of a nose; Copyright: WSU

Researchers advance 3D printing to aid tissue replacement

07/05/2021

Professor Arda Gozen looks to a future someday in which doctors can hit a button to print out a scaffold on their 3-D printers and create custom-made replacement skin, cartilage, or other tissue for their patients.
Read more
Image: 3-D printed cartilage shaped into a curve; Copyright: University of Alberta

3-D 'bioprinting' to create nose cartilage

05/05/2021

A team of University of Alberta researchers has discovered a way to use 3-D bioprinting technology to create custom-shaped cartilage for use in surgical procedures. The work aims to make it easier for surgeons to safely restore the features of skin cancer patients living with nasal cartilage defects after surgery.
Read more
Image: Voltaglue patch applied to a deflated catheter; Copyright: NTU

System to deliver glue for sealing defects in broken blood vessels

03/05/2021

A team of researchers led by Nanyang Technological University, Singapore (NTU Singapore) has developed a device that offers a quicker and less invasive way to seal tears and holes in blood vessels, using an electrically-activated glue patch applied via a minimally invasive balloon catheter.
Read more
Image: A hand with a glove holding a biopsy needle with an attached cable; Copyright: Aalto University

21st century medical needles for high-tech cancer diagnostics

29/04/2021

Modern medicine needs better quality samples than traditional biopsy needles can provide. Ultrasonically oscillating needles can improve treatment and reduce discomfort.
Read more
Image: Coloured image of a bacterial cell; Copyright: Empa

Fighting harmful bacteria with nanoparticles

28/04/2021

In the arms race "mankind against bacteria", bacteria are currently ahead of us. Our former miracle weapons, antibiotics, are failing more and more frequently when germs use tricky maneuvers to protect themselves from the effects of these drugs.
Read more
Image: data epiction of cancer; Copyright: Ella Maru Studio/MPI f. Mol. Genet.

New cancer genes identified with the help of machine learning

13/04/2021

In cancer, cells get out of control. They proliferate and push their way into tissues, destroying organs and thereby impairing essential vital functions. This unrestricted growth is usually induced by an accumulation of DNA changes in cancer genes – i.e. mutations in these genes that govern the development of the cell.
Read more
Image: A spoon with a small amount of hydrogel; Copyright: UPV

Hydrogel cuts in half recovery time from muscle injuries

05/04/2021

A team from the Universitat Politècnica de València (UPV) and the CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) has designed and tested, at a preclinical level, a new biomaterial for the treatment and recovery of muscle injuries.
Read more
Image: 3D-reconstruction of the sarcomere; Copyright: MPI of Molecular Physiology

Zooming in on Muscle Cells

26/03/2021

Scientists have produced the first high-resolution 3D image of the sarcomere, the basic contractile unit of skeletal and heart muscle cells, by using electron cryo-tomography (cryo-ET).
Read more
Image: micrograph of a bone cross-section; Copyright: MPICI

Researchers link breast cancer and bone growth

25/03/2021

A research team consisting of materials scientists from the Max Planck Institute of Colloids and Interfaces (MPICI) in Potsdam and biologists from Cornell University in Ithaca, USA revealed that bones may grow in response to certain signals from a distant breast tumor. This may be a preemptive defense mechanism against skeletal metastasis.
Read more
Image: stamp for cells; Copyright: UPF / Nature Communications

Biological device capable of computing by printing cells on paper

22/03/2021

The Research Group on Synthetic Biology for Biomedical Applications at Pompeu Fabra University in Barcelona, Spain, has designed a cellular device capable of computing by printing cells on paper. For the first time, they have developed a living device that could be used outside the laboratory without a specialist, and it could be produced on an industrial scale at low cost.
Read more
Image: Microscopic image colored in orange and black; Copyright: Salk Institute/Waitt Advanced Biophotonics Core

New method could democratize deep learning-enhanced microscopy

18/03/2021

Deep learning is a potential tool for scientists to glean more detail from low-resolution images in microscopy, but it is often difficult to gather enough baseline data to train computers in the process. Now, a new method developed by scientists at the Salk Institute could make the technology more accessible - by taking high-resolution images, and artificially degrading them.
Read more
Image: A grid of square microwells filled with colored cell clusters; Copyright: Khademhosseini Lab

Multicellular liver-on-a-chip for modeling fatty liver disease

15/03/2021

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. It is found in 30% of people in developed countries and occurs in approximately 25% of people in the United States. Risk factors for the disease include obesity, diabetes, high cholesterol and poor eating habits, although this does not exclude individuals without these risk factors.
Read more
Image: A team of six researchers; Copyright: L. Brian Stauffer

3D microscopy clarifies understanding of body's immune response to obesity

24/02/2021

Researchers who focus on fat know that some adipose tissue is more prone to inflammation-related comorbidities than others, but the reasons why are not well understood. Thanks to a new analytical technique, scientists are getting a clearer view of the microenvironments found within adipose tissue associated with obesity.
Read more
Image: A cell cluster with green and red colored cells; Copyright: Universität Leipzig

Cancer cells become fluidized and squeeze through tissue

22/02/2021

Working with colleagues from Germany and the US, researchers at Leipzig University have achieved a breakthrough in research into how cancer cells spread. In experiments, the team of biophysicists led by Professor Josef Alfons Käs, Steffen Grosser and Jürgen Lippoldt demonstrated for the first time how cells deform in order to move in dense tumor tissues and squeeze past neighboring cells.
Read more
Image: Dr. Žiga Avsec at his home office workplace; Copyright: Avsec / TUM

AI deciphers genetic instructions

19/02/2021

With the help of artificial intelligence (AI) a German-American team of scientists deciphered some of the more elusive instructions encoded in DNA. Their neural network trained on high-resolution maps of protein-DNA interactions uncovers subtle DNA sequence patterns throughout the genome, thus providing a deeper understanding of how these sequences are organized to regulate genes.
Read more
Image: Dr. Lika Drakhlis and Dr. Robert Zweigerdt with bioreactors and a special cell culture dish; Copyright: Karin Kaiser/MHH

Embryonic development in cell culture

15/02/2021

To study early stages in embryonic development in the cell culture dish, scientists use so-called human pluripotent stem cells (hPSC). These are cells with have remarkable special properties that can be multiplied as they can indefinitely multiply and are capable of forming any functional cell type of the body.
Read more
Image: Engineered Heart Muscle (EHM); Copyright: umg/pharmacology

Start of first clinical trial on tissue engineered heart repair

15/02/2021

For the first time, engineered heart muscle (EHM) from human induced pluripotent stem cells (iPSCs) will be used to treat patients with heart failure. After regulatory approval, recruitment of the first patient for the first-in-class, first-in-patient BioVAT-HF early clinical trial has started in Göttingen, Germany.
Read more
Image: Preview picture of video

Tissue Engineering and Bioprinting – From artificial heart valves and printed humans

27/01/2021

Drug research and artificial skin replacement - these are the areas in which tissue engineering and bioprinting are already used today. What else could be possible in the future? We asked Dr. Nadine Nottrodt from Fraunhofer ILT and Prof. Sabine Neuß-Stein from RWTH Aachen University Hospital!
Read more
Image: Illustrations of various 3D-printed prostheses, implants and organs; Copyright: PantherMedia/annyart

Printed life – possibilities and limits of bioprinting

01/12/2020

Implants, prostheses and various other components made of plastic, metal or ceramics are already being produced by additive manufacturing. But skin, blood vessels or entire organs from the printer – is that possible? For years now, intensive research has been underway into the production of biologically functional tissue using printing processes. Some things are already possible with bioprinting.
Read more
Image: cell matrix; Copyright: TU Wien

Multi-photon lithography: printing cells with micrometer accuracy

01/12/2020

How do cells react to certain drugs? And how exactly is new tissue created? This can be analyzed by using bioprinting to embed cells in fine frameworks. However, current methods are often imprecise or too slow to process cells before they are damaged. At the TU Vienna, a high-resolution bioprinting process has now been developed using a new bio-ink.
Read more
Image: 3D printer with a human heart inside, next to a box with

Bioprinting: life from the printer

01/12/2020

It aims at the production of test systems for drug research and gives patients on the waiting lists for donor organs hope: bioprinting. Thereby biologically functional tissues are printed. But how does that actually work? What are the different bioprinting methods? And can entire organs be printed with it? These and other questions are examined in our Topic of the Month.
Read more
Image: three vials, one with hydrogels, one with bio ink and one with unmodified gelatine; Copyright: Fraunhofer IGB

"Cells are highly sensitive" – material development for bioprinting

01/12/2020

The big hope of bioprinting is to someday be able to print whole human organs. So far, the process has been limited to testing platforms such as organs-on-a-chip. That's because the actual printing process already poses challenges. Scientists need suitable printing materials that ensure the cell's survival as it undergoes the procedure. The Fraunhofer IGB is researching and analyzing this aspect.
Read more
Image: Computer-generated image of an arborizing blood vessel; Copyright: panthermedia.net/Ugreen

Angiogenesis: light shows blood vessels the way

03/02/2020

Regenerative medicine aims to replace damage in the body with functional tissue and restore normal function. The first defense for large defects are implants made of hydrogels, designed to promote cell growth. They need their own blood supply, which is a problem when it comes to larger implants because you cannot regulate where and how the blood vessels grow - until now.
Read more
Image: The shoulder of a man with a surgical suture; Copyright: panthermedia.net/JPCPROD

Regenerative medicine: helps the body healing

03/02/2020

Severe wounds heal slowly and leave scars. This is why we have been using regenerative therapies for some time now to accelerate and improve healing. They also help to avoid permanent damage. Still, complex applications like replacing organs or limbs will rather remain vision than become reality for a long time.
Read more
Image: Volker Bruns; Copyright: Fraunhofer ISS

AI software: "iSTIX opens your world to the possibilities of digital pathology"

08/10/2019

The healthcare market offers a multitude of microscopes that make cells visible to the human eye. The same applies to AI-based software for image analysis. After taking the microscopic images, scientist are faced with large volumes of scans with usually low resolution. Yet when all aspects merge together, they open up a the world of digital pathology.
Read more
Image: Cell cultivation in a Petri dish; Copyright: panthermedia.net / matej kastelic

Organ-on-a-chip – Organs in miniature format

01/02/2019

In vitro processes and animal tests are used to develop new medications and novel therapeutic approaches. However, animal testing raises important ethical concerns. Organ-on-a-chip models promise to be a feasible alternative. In a system the size of a smartphone, organs are connected using artificial circulation.
Read more
Image: Man and woman in a laboratory presenting a multi-organ chip; Copyright: TissUse GmbH

Multi-Organ Chips – The Patients of Tomorrow?

01/02/2019

The liver, nervous tissue or the intestines: all are important human organs that have in the past been tested for their function and compatibility using animal or in vitro test methods. In recent years, TissUse GmbH, a spin-off of the Technical University of Berlin (TU Berlin), has launched multi-organ chip platforms. But that’s not all.
Read more
Image: Graphic rendering of several cells in a petri dish; Copyright: panthermedia.net/dani3315

Organ-on-a-chip systems: limited validity?

01/02/2019

Organ-on-a-chip systems are technically a great enhancement of medical research because they facilitate testing of active ingredients on cell cultures in the chambers of a plastic chip. This replaces animal testing and improves patient safety. That being said, they are not a true-to-life replication of the human body and can only simulate a few functions and activities.
Read more
Photo: Preview picture of video

From algorithm to rapid test – Artificial Intelligence classifies blood cells

21/11/2018

Our blood reveals a lot about our physical health. The shape of our blood cells sheds light on several hereditary diseases for example. For a diagnosis, the cells must first be examined under the microscope and categorized into a specific cell class. We met with Dr. Stephan Quint and Alexander Kihm of the Institute of Physics at the Saarland University, who explained how this classification works.
Read more
Image: Small brown mole on the back of a hand; Copyright: panthermedia.net/Mario Hahn

Early detection: Tattoo signals cancer – and more

09/07/2018

People who are not ill and do not show any symptoms typically do not visit the doctor. And while most people know that preventive medical checkups for cancer, for example, are important, they still avoid them. They tend to be very hesitant because the doctor might detect a serious illness. In the future, a new type of implant could make it easier to go to a screening test.
Read more
Image: AcCellerator research device at an exhibition stand; Copyright: Daniel Klaue, ZELLMECHANIK DRESDEN GmbH

Cells in the speed trap – diagnosis in a matter of seconds

22/06/2018

A drop of blood provides a lot of valuable information. However, it takes several hours to analyze the blood of a patient and make a diagnosis. This takes away a lot of time that's crucial for treatment. A new method intends to considerably speed up this process by testing the cells in the blood in terms of their deformability and immune response.
Read more
Image: Two hands are holding a tubular frame that is carrying a glistening wet, white tube; Copyright: Leibniz University of Hanover/Institute of Technical Chemistry

Tissue engineering: how to grow a bypass

23/04/2018

A bypass is a complicated structure. It is either made of synthetic materials that can cause blood clots and infections or created by using the patient’s veins. However, the latter often does not yield adequate material. A newly developed bioreactor could solve this problem in the future. It is designed to tissue engineer vascular grafts by using the body’s own material.
Read more
Image: yellow tape measure with capsules in front of it; Copyright: panthermedia.net/Jiri Hera

Personalized cancer medicine: customized treatment

01/03/2018

Everyone is different. This statement also applies to our health. Cancer, in particular, can look and progress differently depending on the individual person. That’s why every patient ideally also needs a customized treatment that is tailored to their individual needs. But how feasible is this idea?
Read more
Image: a container with the nutrient medium for cancer cells; Copyright: Dr. Markus Wehland

Cells in space – extraterrestrial approaches in cancer research

22/02/2018

Here on Earth, all experiments are bound by gravitation. Yet, freed from gravity's grip, tumor cells, for example, behave in an entirely different way. As part of the "Thyroid Cancer Cells in Space" project by the University of Magdeburg, smartphone-sized containers carrying poorly differentiated thyroid cancer cells are sent into space.
Read more
Image:

"Spray-On" muscle fibers for biomimetic surfaces

08/01/2018

Few patients with heart failure are fortunate enough to receive a donor's heart. Ventricular assist devices (or heart pumps) have been around for several years and are designed to buy time as patients wait for a transplant. Unfortunately, the body doesn't always tolerate these devices.
Read more