News from the Editors -- MEDICA - World Forum for Medicine

MEDICA Newsletter

Social Media

Image: 3-D printed scaffold of a nose; Copyright: WSU

Researchers advance 3D printing to aid tissue replacement

07/05/2021

Professor Arda Gozen looks to a future someday in which doctors can hit a button to print out a scaffold on their 3-D printers and create custom-made replacement skin, cartilage, or other tissue for their patients.
Read more
Image: A grid of square microwells filled with colored cell clusters; Copyright: Khademhosseini Lab

Multicellular liver-on-a-chip for modeling fatty liver disease

15/03/2021

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. It is found in 30% of people in developed countries and occurs in approximately 25% of people in the United States. Risk factors for the disease include obesity, diabetes, high cholesterol and poor eating habits, although this does not exclude individuals without these risk factors.
Read more
Image: a 3D printer; Copyright: PantherMedia / ulldellebre

Rapid 3D printing method moves toward 3D-printed organs

08/03/2021

It looks like science fiction: A machine dips into a shallow vat of translucent yellow goo and pulls out what becomes a life-sized hand. But the video is real. The hand, which would take six hours to create using conventional 3D printing methods, demonstrates what University at Buffalo engineers say is progress toward 3D-printed human tissue and organs.
Read more
Image: regenerative tissue filler for breast conserving surgery; Copyright: Sherry Harbin/Purdue University

Tissue, scaffold technologies provide new options for breast cancer

02/03/2021

New technology from Purdue University innovators may help improve tissue restoration outcomes for people with breast cancer and other diseases or traumatic injuries.
Read more
Image: Engineered Heart Muscle (EHM); Copyright: umg/pharmacology

Start of first clinical trial on tissue engineered heart repair

15/02/2021

For the first time, engineered heart muscle (EHM) from human induced pluripotent stem cells (iPSCs) will be used to treat patients with heart failure. After regulatory approval, recruitment of the first patient for the first-in-class, first-in-patient BioVAT-HF early clinical trial has started in Göttingen, Germany.
Read more
Image: Preview picture of video

Tissue Engineering and Bioprinting – From artificial heart valves and printed humans

27/01/2021

Drug research and artificial skin replacement - these are the areas in which tissue engineering and bioprinting are already used today. What else could be possible in the future? We asked Dr. Nadine Nottrodt from Fraunhofer ILT and Prof. Sabine Neuß-Stein from RWTH Aachen University Hospital!
Read more
Image: cell matrix; Copyright: TU Wien

Multi-photon lithography: printing cells with micrometer accuracy

01/12/2020

How do cells react to certain drugs? And how exactly is new tissue created? This can be analyzed by using bioprinting to embed cells in fine frameworks. However, current methods are often imprecise or too slow to process cells before they are damaged. At the TU Vienna, a high-resolution bioprinting process has now been developed using a new bio-ink.
Read more
Image: 3D printer with a human heart inside, next to a box with

Bioprinting: life from the printer

01/12/2020

It aims at the production of test systems for drug research and gives patients on the waiting lists for donor organs hope: bioprinting. Thereby biologically functional tissues are printed. But how does that actually work? What are the different bioprinting methods? And can entire organs be printed with it? These and other questions are examined in our Topic of the Month.
Read more
Image: three vials, one with hydrogels, one with bio ink and one with unmodified gelatine; Copyright: Fraunhofer IGB

"Cells are highly sensitive" – material development for bioprinting

01/12/2020

The big hope of bioprinting is to someday be able to print whole human organs. So far, the process has been limited to testing platforms such as organs-on-a-chip. That's because the actual printing process already poses challenges. Scientists need suitable printing materials that ensure the cell's survival as it undergoes the procedure. The Fraunhofer IGB is researching and analyzing this aspect.
Read more
Image: Man with mouthguard and laboratory glasses holding Petri dish up; Copyright: panthermedia.net/kasto

Cardiac Tissue Engineering: a heart out of the Petri dish

23/09/2019

For patients waiting for donor organs, every day can mean the difference between life and death. Making things even more complicated is the fact that not every organ is a compatible match with the patient. It would mean enormous progress if we could grow organs from the patient's own cells in the lab. That's why patients with heart disease place big hope in tissue engineering.
Read more
Image: View over the shoulders of two doctors at a screen showing a model of a heart; Copyright: panthermedia.net/Wavebreakmedia ltd

Regenerative heart valves: from simulation to replacement

23/07/2018

Every year, more than 250,000 patients worldwide receive heart valve implants. Children require repeated replacement surgery because their bodies are still growing, the prosthetic heart valves are not. Regenerative heart valves solve this problem. Until now, we have only been able to monitor how these living implants develop in the body after the fact. Computer models now make this predictable.
Read more
Image: Two hands are holding a tubular frame that is carrying a glistening wet, white tube; Copyright: Leibniz University of Hanover/Institute of Technical Chemistry

Tissue engineering: how to grow a bypass

23/04/2018

A bypass is a complicated structure. It is either made of synthetic materials that can cause blood clots and infections or created by using the patient’s veins. However, the latter often does not yield adequate material. A newly developed bioreactor could solve this problem in the future. It is designed to tissue engineer vascular grafts by using the body’s own material.
Read more
Image:

"Spray-On" muscle fibers for biomimetic surfaces

08/01/2018

Few patients with heart failure are fortunate enough to receive a donor's heart. Ventricular assist devices (or heart pumps) have been around for several years and are designed to buy time as patients wait for a transplant. Unfortunately, the body doesn't always tolerate these devices.
Read more