The Fraunhofer Institutes have formed consortia for the overall project’s individual aspects of "disinfection and sterilization", "oxygen supply" and "supply and infrastructure". Since work and equipment surfaces in a medical unit have to be quick and easy to clean hygienically so that germs do not infect patients, surface materials that inhibit the spread of or even inactivate viruses and bacteria will be tested and selected in the MATSE subproject.
The objective of the MATSE subproject is to produce the agents needed for disinfection right on site. To this end, a diamond electrode system will make it possible to disinfect surfaces with hypochlorite. UV-LEDs will also provide a very energy-efficient option for sterilizing surfaces without contact "at the push of a button". Sensors with which the medical surfaces can be tested for viruses and bacteria reliably and rapidly will be employed for inspection.
A novel electrochemical oxygen generator technology will be developed and used for the first time in the subproject e3C-O2. The objective of the O2GEN subproject is to design and test a novel prototype device for the generation and controlled supply of pure oxygen, which is used widely in emergency medicine, critical care medicine, medical, nursing care and households, among other things. Oxygen will be supplied as a by-product from the infrastructural supply in the subproject P2MedCon.
A mobile intensive care hospital room for the treatment of critically ill patients in intensive care beds with ventilators will be refined in the P2MedCon subproject as well. It will be implementable in emergency response plans and free up hospital capacities. Container clinics will be connected with the newly developed system components.
Since reliably supplying such a medical unit is crucial, one aspect in the MATSE subproject concerns supplying hygienic water uncontaminated with viruses and bacteria. At the same time, contaminated wastewater may not simply be released into the environment. Solutions for self-sufficient and flexible raw water purification (removal of viruses, bacteria and toxins), and effective wastewater (blackwater and gray water) treatment systems will therefore be developed.
This bundling in one integrated design reduces equipment and infrastructure and increases availability and reliability for patients and staff, thus making the complete system very efficient. Available resources, especially staff, are used optimally. Important capacities can be freed up and employed elsewhere for crisis management.
Uses for this modular system are varied and go beyond crises or emergencies: It can also be used as a back-up system and to supply micro-hospitals as well as to provide staff basic and advanced training without having to restrict a hospital’s usual routine. The modular design also permits the use of individual system components alone.
In the future, these technical solutions can also be refined by low cost analysis and frugal innovation, even under the economic and social constraints in newly industrialized and developing countries, thus ensuring medical care in regions where this has not been possible or is possible only to a very limited extent.
MEDICA.com; Source: Fraunhofer Institute for Factory Operation and Automation IFF