07/04/2021
Longer-lasting rotator cuff repair may be possible with BioEnthesis, a Purdue University invention available on the market.05/04/2021
A team from the Universitat Politècnica de València (UPV) and the CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) has designed and tested, at a preclinical level, a new biomaterial for the treatment and recovery of muscle injuries.15/02/2021
For the first time, engineered heart muscle (EHM) from human induced pluripotent stem cells (iPSCs) will be used to treat patients with heart failure. After regulatory approval, recruitment of the first patient for the first-in-class, first-in-patient BioVAT-HF early clinical trial has started in Göttingen, Germany.11/02/2021
A team of engineers and scientists has developed a method of 'multiplying' organoids: miniature collections of cells that mimic the behavior of various organs and are promising tools for the study of human biology and disease.01/02/2021
Today we use implants to stabilize or compensate for injuries inside the body and to aid in the healing process. Implants cannot act autonomously and treat the patient if they deem it necessary. However, it is just a matter of time before this happens because research on intelligent implant materials that respond to stimuli is on the cusp of a breakthrough.21/01/2021
Researchers at Lund University in Sweden, in collaboration with colleagues in Dresden, Germany, have developed a way of combining a bone substitute and drugs to regenerate bone and heal severe fractures in the thigh or shin bone.20/01/2021
Just a few millimetres thick, articular cartilage plays a crucial role in our musculoskeletal system, since it is responsible for smooth (in the truest sense of the word) movement. However, the downside of its particular structure is that even minor injuries do not regenerate. Timely treatment of cartilage damage is therefore essential.03/02/2020
Collagen is the stuff that holds our bodies together and that houses our cells. In regenerative medicine, it is also the stuff that can be applied to wounds to support healing. However, collagen from animal or human sources has some drawbacks for today’s medicine. This is where rhCollagen from the Israeli company CollPlant comes into play.03/02/2020
Regenerative medicine aims to replace damage in the body with functional tissue and restore normal function. The first defense for large defects are implants made of hydrogels, designed to promote cell growth. They need their own blood supply, which is a problem when it comes to larger implants because you cannot regulate where and how the blood vessels grow - until now.03/02/2020
Regenerative medicine aims to repair the human body after injuries, accidents or major cancer surgery. Unfortunately, we are still not at a stage where this process can achieve optimal results for every conceivable situation. Having said that, various new methods are on the cusp of breakthrough.03/02/2020
Severe wounds heal slowly and leave scars. This is why we have been using regenerative therapies for some time now to accelerate and improve healing. They also help to avoid permanent damage. Still, complex applications like replacing organs or limbs will rather remain vision than become reality for a long time.23/09/2019
For patients waiting for donor organs, every day can mean the difference between life and death. Making things even more complicated is the fact that not every organ is a compatible match with the patient. It would mean enormous progress if we could grow organs from the patient's own cells in the lab. That's why patients with heart disease place big hope in tissue engineering.01/07/2019
Physical activity plays a big role in today's society. Whether you are an amateur or professional athlete – incorporating exercise into your life positively impacts your mental and physical health. Ideally, sport should be fun, pressure-free and not overburden you. But can you measure individual performance and align it with sports?23/07/2018
Every year, more than 250,000 patients worldwide receive heart valve implants. Children require repeated replacement surgery because their bodies are still growing, the prosthetic heart valves are not. Regenerative heart valves solve this problem. Until now, we have only been able to monitor how these living implants develop in the body after the fact. Computer models now make this predictable.23/04/2018
A bypass is a complicated structure. It is either made of synthetic materials that can cause blood clots and infections or created by using the patient’s veins. However, the latter often does not yield adequate material. A newly developed bioreactor could solve this problem in the future. It is designed to tissue engineer vascular grafts by using the body’s own material.