Fraunhofer ISS
08/10/2019
The healthcare market offers a multitude of microscopes that make cells visible to the human eye. The same applies to AI-based software for image analysis. After taking the microscopic images, scientist are faced with large volumes of scans with usually low resolution. Yet when all aspects merge together, they open up a the world of digital pathology.01/02/2019
In vitro processes and animal tests are used to develop new medications and novel therapeutic approaches. However, animal testing raises important ethical concerns. Organ-on-a-chip models promise to be a feasible alternative. In a system the size of a smartphone, organs are connected using artificial circulation.01/02/2019
The liver, nervous tissue or the intestines: all are important human organs that have in the past been tested for their function and compatibility using animal or in vitro test methods. In recent years, TissUse GmbH, a spin-off of the Technical University of Berlin (TU Berlin), has launched multi-organ chip platforms. But that’s not all.01/02/2019
Organ-on-a-chip systems are technically a great enhancement of medical research because they facilitate testing of active ingredients on cell cultures in the chambers of a plastic chip. This replaces animal testing and improves patient safety. That being said, they are not a true-to-life replication of the human body and can only simulate a few functions and activities.